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Abstract. The dynamic behavior of a car can be modeled as a hybrid
system involving continuous state changes and discrete state transitions.
However, we show that the control of safe (collision free) lane change
maneuvers in multi-lane traffic on highways can be described by finite
state machines extended with continuous variables coming from the en-
vironment. We use standard theory for controller synthesis to derive the
dynamic behavior of a lane-change controller. Thereby, we contrast the
setting of interleaving semantics and synchronous concurrent semantics.
We also consider the possibility of exchanging knowledge between neigh-
boring cars in order to come up with the right decisions.
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1 Introduction

We consider the safety (collision freedom) of traffic on multi-lane highways. A
means to avoid collisions in car maneuvers are advanced driver assistance systems
(ADAS) onboard the cars. These systems require that each car is equipped with
suitable controllers that interact with other cars by sensors and communication.
The development of such a controller is difficult because the interaction of cars
on a highway constitutes a distributed hybrid system, combining continuous
car dynamics with discrete decisions of the controllers. Therefore every part or
pattern of the system that can be automated is of great help.

Well-known is the California PATH (Partners for Advanced Transit and High-
ways) project that developed automated highway systems for cars driving in
groups called platoons [1]. The maneuvers include joining and leaving the pla-
toon, and lane change. Lygeros et al. [2] sketch a safety proof for car platoons
taking car dynamics into account, but admitting collisions at a low speed.
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This paper is motivated by previous work in [3], where an abstract model of
highway traffic was introduced, consisting of so-called traffic snapshots. The main
idea of [3] was that safety is a spatial property. Using a dedicated spatial logic
called Multi-Lane Spatial Logic (MLSL) to describe spatial properties concisely,
we presented two controllers for the lane-change maneuver on highways and
proved that under certain assumptions the controllers guarantee safety. However,
the controllers themselves were introduced in an ad-hoc manner.

In this paper, we employ methods from discrete-event systems to synthesize
the controllers, thus offering a systematic approach to construct such controllers.
The achievement is that we connect methods from discrete-event systems with
the application area of traffic maneuvers of multiple cars on highways. We also
use methods from protocol derivation to obtain the specification of message
exchanges in the case that certain cars need to communicate for their control
decisions.

We describe the setting of multi-lane traffic as in [3] (however, without using
MLSL), the control architecture, and the control components inside a single car
with their interactions. As a formal representation of hybrid systems we consider
a variant of Hybrid Input-Output Automata (HIOA), where assumptions on
inputs are allowed [4]. However, we focus on the discrete actions needed for lane
control, thereby assuming that the car maneuvers of speed control and steering
are dealt with separately.

Our main contributions are as follows:

– We show that from a description of the set of all possible discrete behav-
iors during a lane change we can synthesize constraints that yield a safe
lane change controller. This is achieved by applying a standard method for
controller synthesis in discrete event systems [5].

– We investigate the impact of different semantic models of parallel composi-
tion: interleaving vs. synchronous parallelism. In the latter model more in-
tricate safety risks of a lane change are revealed. We show that the method
for controller synthesis can cope with both models.

– We investigate different sensor models that represent different knowledge a
car may have about its neighboring cars during a lane change. In [3], the
case that a car can sense only the lengths of other cars but not their braking
distances was solved by stipulating a helper car and suitable communications
with it. Here we show that these communications can be synthesized by
applying methods for protocol synthesis [6].

This paper is structured as follows. In Section 2 we present the details of our car
traffic modelling. In Section 3 we develop stepwise our approach to controller
synthesis for multi-lane highway traffic. Conclusions are presented in Section 4.

2 Car traffic modeling

2.1 The multi-lane highway

The development of a controller is based on models of the system to be controlled.
In the case of car traffic, the system consists of the traffic infrastructure, such
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as roads, traffic lights, etc., and cars that drive within this infrastructure. The
traffic infrastructure and the cars can be modelled as consisting of multiple
components.
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Fig. 1. A multi-lane highway with several cars. The large rectangle shows the
view of car A, i.e., the part of the environment visible to A.

In this paper, we consider the infrastructure of multi-lane highways as shown
in Fig. 1. In this case, the infrastructure consists of a fixed number of lanes,
numbered 0 through L. This infrastructure is passive. It only serves as a coor-
dinate system in which the cars evolve. Each car has a position along the road
(from left to right in the figure) and the current lanes used, normally a single
lane, but during a lane change a car uses two adjacent lanes.

Each car posssesses a set of sensors, which defines the part of the highway it
may perceive, called its view. In Fig. 2, a possible view of the car A is indicated by
the rectangle surrounding A. The main motivation behind the concept of views
is that safety of each car only depends on its local environment. The physical
constraints on such a finite set of space ensure that only finitely many cars can be
responsible for unsafe situations during each maneuver. Finally, since we assume
that all cars behave alike, it is sufficient to analyse the interaction of two cars: if
an accident happens, at least two cars are colliding. In this paper, we deal with
the conflicting situation where two cars, say cars A and F in Fig. 1, claim space
on the same lane. For conflicts between a claiming car and a car already on the
claimed lane, say cars A and E in Fig. 1, we refer to our extended version [7].

2.2 A hybrid model of a car

A car can also be modelled as consisting of several components. In this paper,
we consider the components shown in Fig. 2: velocity control, steering, and lane
control. These components are not passive, but have dynamic behavior. In order
to describe such behavior, one first has to define their communication with their
environment. The interfaces over which the components communicate are indi-
cated in Fig. 2 by arrows. We distinguish between two types of interfaces: (a)
shared (real-valued) interface variables, and (b) so-called interaction interfaces
(dashed arrows). The static interconnection structure between components and



4 Gregor v. Bochmann Martin Hilscher Sven Linker Ernst-Rüdiger Olderog
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Fig. 2. Control components of a single car.

interface variables is such that each interface variable has exactly one component
(possibly the environment) that determines the value of the variable – it repre-
sents the output of that component – while several components may read the
value of the variable – it is the input for those components. The actions occur-
ring over interaction interfaces are related to discrete transitions (see below). An
action is initiated by the component for which the interface is output. Examples
of interface variables in Fig. 2 are target-speed and acceleration; examples of
actions are r(m) and wd-c(m).

Each component can be modelled as a Hybrid Input-Output Automaton. Its
dynamic behavior is determined by (a) continuous state changes (called trajecto-
ries in [8]) which determine the values of output variables as a function of input
variables and the evolving time, and (b) discrete transitions, associated with
internal actions or interactions, which change the internal state (called mode)
which determines the trajectories that are active in this mode and usually asso-
ciated with an invariant that holds in this mode (see for example [9])

The roles of the components shown in Fig. 2 are as follows. The velocity
control component receives as input the target velocity set by the driver, the
measured current velocity of the car, and the front distance to be maintained, as
determined by the lane control component. The defined trajectories determine
the value of the acceleration (output variable) as a function of the input variables
and time. As dependent output variables, the component also produces the value
of the safety distance, sd, which depends on the speed of the car. This distance
is calculated such that the car could stop before that distance in case that a
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fixed obstacle suddenly occurs at that distance in front of the car. In the normal
operation mode, the speed control component will select a trajectory for the
acceleration (or deceleration) such that the target speed will be attained under
the condition that the front distance is larger than the safety distance. A possible
way to construct such a component is described in [9,10].

The steering component controls the direction output variable, which acts via
the steering angle on the front wheels of the car. It uses as input the orientation
(angle of the car to the forward direction of the lane), the current velocity of the
car, and the measured left-to-right position of the car over the different lanes.
It has an internal variable which contains the target lane of the car. The value
of this variable is set by the input action r(m) which sets the target lane to the
value m. When the current lane has been changed, the component will perform
a discrete transition with the output action wd-r(n) when the reservation of the
old lane n is not needed any more. A possible way to construct such a component
is described in [10].

The lane control component is responsible for determining when a lane
change maneuver can be performed. Such a lane change maneuver is requested
by the driver through a discrete transition with the input action “lane-change-
request” which tells the steering component to which lane it should move. Before
performing such a maneuver, the component has to make sure that there is the
necessary space on the new lane and that there is no conflict with other cars that
may want to change their lane, as described in the following sections. For this
purpose, there are a number of input and output variables through which the
lane control component interacts with other cars in its environment (see Fig. 2).

2.3 Highway traffic with lane change

In this paper we concentrate on lane change on multi-lane highway which is
handled by the lane control component. Its behavior does not involve any tra-
jectories and can be described by a finit-state input-output automaton (IOA)
where transitions may have guards that depend on variables.

The following lane change procedure was proposed in [3]: a car that wants
to change lane, for instance the car A in Fig. 1, first “claims” the lane to which
it wants to move (this corresponds to setting the turn signal (“blinker”) in the
manual car driving mode), and then “reserves” the new lane before it moves over
on to the new lane.

Each car has the following attributes, in addition to those mentioned above:

– res: the set of lanes reserved. It has at most two elements, namely the current
lane n, and possibly an adjacent lane m to which the car wants to move.

– clm: the set of lanes claimed. It has at most one element. The claimed element
must be a lane adjacent to the current lane n.

The reserved lanes of the cars define the safety condition for the system. The
meaning of a lane reservation by car c is that the lane is reserved for car c over
the distance range from the current position of the car, c.pos, up to the point of
its safety distance, c.pos + c.sd. We call this range the safety envelope of c.
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The dangerous situation of a collision is formalized by the following condition:

col = ∃ c1, c2 : ((c1.res ∩ c2.res 6= ∅) ∧ safetyOverlap(c1, c2)), (1)

where safetyOverlap(c1, c2) is true if there is an overlap of the ranges from the
current position up to the point of the safety distance for the two cars c1 and c2:

safetyOverlap(c1, c2) = (c1.pos ≤ c2.pos ≤ c1.pos + c1.sd) ∨
(c2.pos ≤ c1.pos ≤ c2.pos + c2.sd).

We say that the system is safe if there is no overlap of the safety envelopes of
any two cars on any given lane, that is, if the collision condition col is false.

To describe the dynamic behavior of the lane change control component
during lane change, the following interactions are introduced::

– c(m): introduce a claim for lane m,
– wd-c(m): withdraw the claim for lane m,
– r(m): change a claim for lane m into a reservation for lane m,
– wd-r(m): withdraw the reservation for lane m.

3 Controller synthesis for multi-lane traffic maneuvers

3.1 Overview of controller synthesis

The design of controllers for hybrid systems has to deal with two aspects: the
control of the continuous flows, and the control of the discrete actions. In this pa-
per we limit ourselves to the discrete aspects, since we concentrate the discussion
on the lane control component, which has a behavior essentially characterized
by discrete transitions, such as shown in Fig. 3. The synthesis of controllers for
discrete event systems was first described in [11]. Distributed control of systems
consisting of several communicating components is described in [5]. It turns out
that the method of submodule construction, as introduced in [6], can also be
used for this purpose. In [12] this approach is formalized and described for dif-
ferent types of interactions between the controlled system, the environment and
the controller. The approach of [12] is used in the following.

The typical system architecture for controlling a single component comprises
the plant (to be controlled, called world model in [13]), the environment, and the
controller. The behavior of the plant is defined in terms of its interactions with
the environment. These interactions are classified into controllable and uncon-
trollable interactions. The controller can observe a subset of these interactions,
called the visible interactions, and it may prevent the occurrence of a visible
controllable interaction, but it has no impact on uncontrollable or invisible in-
teractions. In our modeling framework, we distinguish between input and output
interactions. Plant inputs from the environment are in general uncontrollable,
while input from the controller is controllable. The outputs of the plant to the
controller are either controllable (can be prevented) or uncontrollable.
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The environment provides input interactions to the plant, called disturbances
in [13]. These inputs may depend on the outputs received from the plant pre-
viously. The order in which these inputs may arrive is sometimes called the
environment assumption. The behavior of the environment may be described
by a state machine model. In this case, the model explicitly describes in which
state which input may be provided, thus defining the environment assumption.
The environment model is also used to define control objectives: Safeness objec-
tives, namely that in certain states the plant should not provide certain specific
outputs, can be modeled by including in the behavior of the environment a tran-
sition for such outputs into a Fail state – and the objective is that such a Fail
state should never be reached.

We assume in the following that the set of possible sequences of interactions
of the plant can be described by a finite automaton P where all its states sP are
accepting, and the set of interaction sequences of the environment are described
by a finite automaton E where its states sE are accepting, except the Fail states.
In the case of full visibility, the most general controller behavior C that avoids the
Fail states of the environment is obtained from the finite automaton C1 = P×E
(product of P with E where a state (sP , sE) of the product is accepting iff sE
is accepting in E). From this automaton, certain states must be pruned, that is,
eliminated, in order to obtain the controller C.

Pruning is a recursive procedure. In each iteration, the following states are
pruned: (a) any non-accepting states, (b) any states that have a transition with
an uncontrollable interaction to a state that was pruned in an earlier iteration,
and (c) any state that is a deadlock (that has no outgoing transition – we as-
sume here that the plant and the environment, separately, do not have a final
(deadlocking) state). A state is pruned by eliminating all outgoing transitions,
all incoming transitions with controllable (and visible) interactions that lead
into the state, and the state itself. The procedure stops when during the next
iteration no further state is pruned.

If all states are eliminated by the pruning procedure, then there exists no
suitable controller. However, it is important to note that, if a suitable controller
is found, this controller may constrain the plant so much that the remaining
behavior is not useful for the application at hand – in other words, the behavior
satisfies the safety properties defined by the control objectives, but does not
satisfy the liveness properties of the application. Controller synthesis including
liveness objectives is discussed for instance in [14].

In the case of partial visibility, the product automaton C1 must first be pro-
jected onto the visible interactions. The resulting projected automaton, which
is in general non-deterministic, must be determinized before the pruning op-
erations can be performed. Hence, partial visibility introduces an exponential
blow-up of the set of states. However, in the examples discussed in this paper all
interactions are visible, i.e., no blow-up occurs.

For the application of multi-lane traffic control, as described in Section 2, we
have a plant that consists of a large number of cars. We would like to obtain
a controller per car that is able to control the controllable interactions of that
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car, and may possibly see some of the interactions of other cars, without being
able to control them. In fact, in this paper we are mainly interested in deriving a
controller for the lane control component of cars. For such a controller, all output
interactions of its lane control component are controllable, but all other inter-
actions – including output interactions of other cars – are uncontrollable. This
situation is studied in [5] and called distributed control. We note, however, that
in general the problem of synthesizing distributed control is undecidable [15].

3.2 A simple algorithm for lane change

Let us first assume that the lane control component has the simple behavior
shown in Fig. 3 (a). In this case no claims are made. The notation A.qRC means
that car A is in control state q, it has reserved the lanes in the set R, and it
claims the lanes in the set C. The car A in lane n starts with an action r(m)
which is an output action that interacts with the steering component which will
steer the car on to the new lane m. When this is done, that component will
withdraw from the previous lane by producing the wd-r(n) interactions which
is received by the lane control component, and the car goes back to the normal
driving condition.

A.1{n}{} A.2{m,n}{}

A.1{m}{}(a)

r(m)

wd-r(n)

A.1{n}{} A.2{n}{m}

A.3{n,m}{}A.1{m}{}(b)

t1 : c(m)

t2 : wd-c(m) t3 : r(m)

t4 : wd-r(n)

Fig. 3. Behavior of a car A changing from its current lane n to a neighboring
target lane m ∈ {n − 1, n + 1}: (a) simple algorithm, (b) protocol with a claim
transition c(m) as in [3].

Let us consider a given car ego with its lane change controller. Its environment
consists of all the other cars in the system and the requirement that the system
should be safe in all instants. A safety condition can be proven by showing that
it holds in the initial state and remains invariant under all transitions that the
system may make. In this example, the safety objective to be satisfied is the
condition ¬ col (no collision). This can be modeled by an environment E with
two states, one where ¬ col holds, and one where it is false. The latter is a Fail
state. The plant P consists of all cars operating concurrently. Consider now
two arbitrarily chosen cars A and F . We are interested in understanding what
happens if two cars want to reserve the same lane at the same time, as in Fig. 1.
In order to understand the situation in more detail, Fig. 4 shows the states of
the plant, that is, the global reachability analysis involving the two cars A and
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F . Building the product C1 = P × E, we see that the state 4 in the figure is a
Fail state if the two cars have a safety overlap, that is, if safetyOverlap(A,F ) is
true (which implies col).

Therefore this Fail state must be pruned, if such an overlap exists. To this
end, the transitions leading into this state should be pruned (see dashed arrows
in the figure). The transition A.r(n+ 1) shown in the figure is performed by car
A. It should be pruned if safetyOverlap(A,F ) is true, because car F has already
reserved lane (n + 1) which makes the condition col true for the cars A and F .
Generalizing from this example, we conclude that the transition r(m) in Fig.
3(a) should be pruned if the following condition cc, called collision check in [3],
is false:

A.cc(m) = ¬∃ c : ((m ∈ c.res) ∧ safetyOverlap(A, c)).

This means that the predicate A.cc(m) is an enabling condition for the transi-
tion r(m) of car A. The same condition for car F restricts the transition F.r(n+1)
in Fig. 4 in such a way that the system remains safe.

It is important to note that the global system model uses the interleaving
semantics [16], that is, there are never two transitions that occur at the same
time. If, on the contrary, transitions may occur concurrently, it would be possible
that the cars A and F in Fig. 1 would simultaneously perform a transition
r(1), i.e., the dotted transition in the figure, resulting in a collision on lane 1.
Interleaving semantics is widely used for modeling concurrent state machines.
We note that interleaving semantics was also assumed in the safety proof of [3].

We note that the output action r(m) also induces a mode change in the lane
control component which determines the front distance used by the velocity con-
troller for keeping safe distance with the cars in front. The function determining
the front distance will have to change because the car must now keep safe dis-
tance to the preceding cars on both lanes. Similarly, a mode change occurs with
the subsequent wd-r(m) action.

3.3 Interleaving semantics or synchronous models?

It can be argued that interleaving semantics is not a realistic assumption for
distributed systems where transitions are controlled independently by different
components. Suppose that cars A and F decide at the same time that they want
to reserve lane number 1. They will check whether the lane is free and then
perform the r(1) transition. If car A does this just before car F , the question
arises whether it is realistic to assume that car F will notice this change of
reservation made by car A before it performs its own reservation?

A better modeling paradigm appears to be synchronous systems with stut-
tering. In synchronous systems, all system components perform a transition in
parallel during a transition period. Stuttering means that, in each transition pe-
riod, a component may decide to do no transition, that is, remain in the same
state. For the IOA modeling paradigm that we use for the discrete transitions
of the lane control component, this means that an output transition of one com-
ponent will proceed in parallel with the corresponding input transitions of those
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components receiving the output as input. Other components, during the same
transition period, may remain in the same state or perform an internal discrete
transition. For the example of lane changing cars considered in this paper, this
means that a transition of the lane controller of one car may occur in parallel
with a lane controller transition of another car (which is not possible in the
context of interleaving semantics).

1
A.1{n}{}

F.1{n+ 2}{}

2
A.2{n, n+ 1}{}
F.1{n+ 2}{}

3
A.1{n}{}

F.2{n+ 2, n+ 1}{}

Fail state 4
A.2{n, n+ 1}{}

F.2{n+ 2, n+ 1}{}

A.r(n+ 1)

F.r(n+ 1)) F.r(n+ 1)

A.r(n+ 1)

F.wd-r(n+ 2) F.wd-r(n+ 2)

A.wd-r(n)

A.wd-r(n)

Fig. 4. Reachability analysis for two cars, A and F , behaving as in Fig. 3 (a).
Solid and dashed arrows represent transitions in interleaving semantics. The
dotted arrow represents an additional transition in the synchronous model.

When this modeling paradigm is used for the simple lane change algorithm
discussed above, there are problems as shown in Fig. 4 and discussed above.
The dashed transitions are pruned by the cc enabling condition for the r(m)
transition, but this condition does not prevent the possibility of simultaneous
transitions of both cars from state (A.1, F.1) to state (A.2, F.2), as indicated by
the dotted transition in the figure. Because of the independence of the distributed
controllers in cars A and F , this dotted transition can only be pruned by also
pruning the transitions from (A.1, F.1) to (A.2, F.1) and from (A.1, F.1) to (A.1,
F.2), which means that no reservations can be made at all. Therefore, there does
not exist a suitable controller for the simple algorithm for lane change when
simultaneous transitions of different cars are allowed.

3.4 Lane change algorithm allowing for parallel transitions

The problem of avoiding car collisions is an instance of the mutual exclusion
problem. The space on the lane is the shared resource that must be managed
in mutual exclusion by the different cars. One of the earliest mutual exclusion
algorithms proposed by Dekker [17] achieves this goal by introducing for each
user a variable ‘claimed’ which can be read by the other user. Before using the
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resource, a user first has to set its own claimed variable to true, and then he can
only use the resource if the claimed variable of the other user is false.

The lane reservation protocol proposed in [3] is based on this principle and
represented in Fig. 3 (b). In case of a conflict between the two cars, both cars
abandon their reservation and withdraw their claim. In order to avoid infinite
looping, it must be assumed that there is some random waiting before each user
repeats his claim, similar to the behavior of agents in the ALOHA system [18].

A.1{n}{}
F.1{n+ 2}{}

A.2{n}{n+ 1}
F.1{n+ 2}{}

A.1{n}{}
F.2{n+ 2}{n+ 1}

A.2{n}{n+ 1}
F.2{n+ 2}{n+ 1}

A.1{n}{}
F.3{n+ 2, n+ 1}{}

A.2{n}{n+ 1}
F.3{n+ 2, n+ 1}{}

A.3{n, n+ 1}{}
F.1{n+ 2}{}

A.3{n, n+ 1}{}
F.2{n+ 2}{n+ 1}

Fail state
A.3{n, n+ 1}{}

F.3{n+ 2, n+ 1}{}

. . .

. . .

...
...

A.t1

A.t2

F.t1F.t2 F.t1

A.t1

F.t2

F.t3 F.t3

A.t2

A.t3

A.t3

A.t4

A.t2

A.t3

F.t1F.t2

F.t3

A.t1‖F.t1

A.t3‖F.t3
A.t1‖F.t3

A.t3‖F.t1

A.t2‖F.t2 A.t3‖F.t2

F.t4 F.t4

A.t4

A.t4

Fig. 5. Reachability analysis for two cars, A and F , behaving according to Fig-
ure 3 (b), with concurrent transitions, trying to reserve overlapping space on the
same target lane n + 1.

The proposed protocol proceeds as follows. First, car A claims a space on the
target lane m adjacent to its current lane n by the action c(m). Subsequently, it
checks whether this claim intersects with the reservation or claim of any other
car. In that case, A withdraws its claim by the action wd-c(m). Otherwise,
without any intersection, A turns its claim into a reservation by the action r(m)
so that it now reserves space on the two neighboring lanes m and n. During
this double reservation A performs the lane change. Once this is completed,
A withdraws its reservation on the original lane n by the action wd-r(n) and
continues to drive on the target lane m.
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In order to derive the necessary control constraints, we proceed along the
lines discussed in Section 3.2. Again, we consider the the plant P consisting of
two cars that want to reserve the same space on a given lane, for example the
cars A and F in Fig. 1. The global plant behavior is shown by the state diagram
of Fig. 5 which is the product of two state machines defined by Fig. 3 (b). The
figure represents the uncontrolled behavior of two cars on lanes n and n+ 2 that
both want to move to lane m = n + 1. If we build the product of the plant
behavior with the environment objective, C1 = P × E, we see that the lower
right state becomes a Fail state where both cars collide.

As in Section 3.2, we can introduce constraints (pruning) in the state machine
of Fig. 3 (b) in order to eliminate the transitions into the Fail state. This means
that we introduce a constraint on the r transition t3 in Fig. 3 (b), such that this
transition is not possible when the global system is in a state where the other
car is in state 2 or 3, as shown in Fig. 5 by the dashed transitions. These states
are characterized by the fact that the other car either has claimed or reserved an
overlapping space on the same lane. Therefore the constraint for the transition
of a car ego is the following condition pcc, called potential collision check :

ego.pcc(m) = ¬∃ c : ((m ∈ c.res ∨m ∈ c.clm) ∧ safetyOverlap(ego, c)).

If this constraint is implemented in both cars, then the joint transition from
state (A.2, F.2) in Fig. 5 directly into the Fail state will also be eliminated and
the system is safe.

We note that the lane change algorithm obtained by our derivation approach
is very similar to the algorithm proposed in [3], which was verified for interleaving
semantics. In fact, they are identical if the states q1 and q2 of Fig. 2 in [3] are
combined by ignoring the time constraint for state q2. However, this constraint
does not concern safety, but was only included to obtain a upper time-bound for
a lane-change maneuver. Therefore this paper shows that the algorithm of [3] is
not only correct for interleaving semantics, but also in a synchronous model.

3.5 Using a helper car

The preceding discussion assumes that a driving car has local knowledge about
the reserved and claimed lanes of other cars in its environment and of the posi-
tion and safety distance of these other cars. Among this information, the safety
distance is probably the most difficult to obtain since it depends on the po-
sition and velocity of the other car. Therefore it is considered in [3] that this
information may be obtained through message exchanges with another car in
the environment, which is called a helper car. Such a car c should be on the
target lane, but behind the lane changing car ego. It should provide information
for the evaluation of the safetyOverlap(ego, c) predicate. This predicate must be
evaluated in state 2 of Fig. 3 (b), before the transition r(m) can be performed.
In Fig. 1, car E is a helper car for A in its lane change.

We would like to derive the behavior of the lane changing and helper cars
from the behavior discussed in Section 3.4 for the case that the safety distance
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(a)

A.1{n}{} A.2′{n}{m} A.2{n}{m} A.3{m,n}{}

A.1{m}{}

c(m) get-info r(m)

wd-c(m)
wd-r(n)

(b)

A.1{n}{} A.2′{n}{m} A.2′′{n}{m}

A.2{n}{m} A.3{m,n}{}

c(m) send(mes1)

receive(mes2)
wd-c(m) r(m) wd-r(n)

(c)

H.1 H.2 H.3
receive(mes1) get-info

send(mes2)

Fig. 6. (a) Global transition diagram involving a helper car that reads its own
safety distance. Derived behavior for (b) lane changing car and (c) helper car.

information is available locally in each car. For this purpose, we can use the
derivation algorithm described in [19] or use the approach described in [20]. In
both cases, one starts out with a global specification of the different actions and
their order of execution without being preoccupied by the question which com-
ponents is responsible for executing each action, such as shown in Fig. 3 (b).
After the different actions are allocated to the components that are responsible
for their execution, a so-called protocol derivation algorithm constructs the lo-
cal behavior specification for each component which include, in addition to the
actions for which the component is responsible, the exchanges of coordination
messages that are required for assuring the orderly execution of all these actions.

The principle of the protocol derivation algorithm [19] is to copy the control
flow graph of the global specification for execution by each component, but to
ignore all actions performed by other components and include instead the sending
and reception of certain coordination messages. These coordination messages
depend on the control flow operators in the global specification. For concurrency
and weak sequencing (enforcing sequencing only locally inside components [21]),
no coordination messages are required. However, they are essential for strict
(i.e., global) sequencing, alternatives and loops. If a local action a1, performed
by component c1, is followed (strictly) by an action a2 performed by another
component c2, a coordination message will be send by c1 to c2, and the message
will be received by by c2 before the local action a2 is performed.

In the case of the system of a lane changing car with its helper car, we take as
global behavior specification a modified version of Fig. 3 (b), where an additional
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get-info action is introduced before entering state 2, as shown in Fig. 6 (a). This
action is executed by the helper car, while all other actions are executed by the
lane changing car. If we apply the protocol derivation algorithm, we obtain the
behaviors for the lane changing car and the helper car shown in Figures 6 (b)
and (c). Sending and receiving the synthesized coordination messages mes1 and
mes2 guarantee the right sequencing of the get-info action and the actions of
the lane changing car.

The behavior of Fig. 6 (c) should be performed in each car by the lane control
component concurrently with its normal behavior described by Fig. 6 (b). The
message mes1 is effectively a request to send the safety distance information,
and the message mes2 sent by the helper car contains the information.

The algorithm obtained here is quite different than the algorithm proposed
in [3]. The reason is that in [3], the helper car makes the decision whether a
lane change can be done and answers yes or no. In our approach, the helper car
simply returns the value of a local variable; the decision whether the lane change
can be done remains with the lane changing car. The algorithm proposed in this
paper is simpler.

4 Conclusion

This paper revisits the traffic maneuvers on multi-lane highways as discussed
in [3]. The main conclusions of the discussions in this paper, which apply to the
control of hybrid systems in general, are as follows:

(1) For verifying the safety of systems consisting of several loosely coupled
components, where the behavior of a component may depend on the state of other
components and where there may be some (even small) delay of communication,
a modeling paradigm using interleaving semantics is not suitable. The possibility
that different discrete transitions of several components occur in parallel must
be considered, which can be modeled by synchronous modeling paradigms. (For
a detailed discussion, see Section 3.3).

(2) Well-known algorithms for synthesizing controllers for discrete event sys-
tems (e.g. [5]) can be used for synthesizing controllers for the discrete transitions
of hybrid systems. Corresponding algorithms exist for interleaving semantics,
synchronous systems, and IOA [12]. (For a detailed discussion, see Section 3.1).

(3) When the global behavior involving several system components is known,
for instance the actions that should be performed by different controllers of differ-
ent components, then the behavior of each controller, including the exchange of
coordination messages, can be synthesized using an algorithm described in [19].
(For a detailed discussion, see Section 3.5).

We note that an additional difficulty may occur during the lane change ma-
neuver if a fast driving car approaches the claimed space just when the claim
is being made. It could happen that the safetyOverlap condition with this car
becomes false at the same time as the claim is set. It is shown in an extended
version of this paper [7] that a collision can be avoided by requiring that the
front distance, which is used for the calculation of the safety distance by the
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approaching car, should take into account the distance to the lane changing car
as soon as the claim is made.
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